
6.46.5.2.

NEURAL NETWORKS

Igor Vajda, Academy of Sciences of the Czech Republic
Jǐŕı Grim, Academy of Sciences of the Czech Republic

Keywords
the neuron, cerebral cortex, artificial intelligence, perceptron, multilayer perceptron, learn-
ing, back-propagation algorithm, self-organizing maps, probabilistic approach

Contents
1. Nervous Systems and Neurons
2. Perceptrons and More General Models of Neurons
3. Multilayered Perceptrons and General Neural Networks
4. Radial Basis Function Networks
5. Probabilistic Neural Networks
6. Self–Organizing Map of Kohonen
7. Bibliography

Glossary
Automaton is a mathematical machine with an input, an output and a memory. The
output depends on the input and current state of memory. The memory can be modified
depending on its current state and the input. automata can “learn” in the sense that
they are able to modify their memory.
Neuron has different meanings in the neurophysiology and in in the neural network sci-
ence. The latter is a more or less realistic abstract model of the former.
Neuron of the neurophysiology as the basic constituent of biological neural systems is
a biological cell responsible for information transmission and information processing in
higher organisms.
Neuron of the neural network science is an automaton with an input consisting of one or
more discrete or continuous components, an output consisting of one discrete or continu-
ous variable and a memory containing the same number of components as the input. The
output is either the product of the input and memory or an appropriate function of this
product.
Neural network is the basic concept of the neural network science. It is a system of inter-
connected neurons usually arranged into layers. A typical neural network is able to react
to stimuli coming from outside by producing one or more outputs. Learning of the neural
network is a process aiming at optimization of the outputs, at achieving outputs which
are “intelligent” in some sense. This depends on the purpose which the neural network
is to serve. Since there is a wide variety of purposes and approaches, there exists a wide
variety of types of neural networks, e.g. multilayer perceptrons, radial basis functions
networks, probabilistic neural networks, self-organizing Kohonen networks etc.

1

Summary
The method of selective coloring of neurons discovered by Golgi in 1875 enabled Ramon
y Cajal to show the structure of neural tissue as a complex network of specific cells -
neurons. The neurons occurring in a wide variety of shapes and sizes have a large number
of inputs (synapses) at their receptive zones (dendrites) and a single output line (axon)
branched into multiple synaptic endings. Microelectrode was the starting point of ideas
which led McCulloch and Pitts to the binary threshold model of neuron’s electrical activ-
ity. In 1949 Hebb proposed a physiological rule for synaptic plasticity as a basic adaptive
principle of neural assemblies. However, despite of the extensive and detailed knowledge
accumulated in the last century, the learning principles of biological neural assemblies still
continue to be a strong motivation for further search of suitable neural network models.
Around 1960 Rosenblatt proposed perceptron - the most popular artificial neural net-
work and succeeded to prove the convergence of a heuristic learning rule. The optimism
initiated by the perceptron convergence theorem was damped by a book of Minsky and
Papert in 1969 who demonstrated fundamental limits of perceptron-like networks. A new
interest in neural networks come with new approaches and learning algorithms. One of
the most influential methods called self-organizing maps has been proposed by Kohonen
and others to demonstrate the principles of topologically ordered maps in the brain. The
widely used back-propagation algorithm was designed to solve the difficult optimization
problem in multilayer networks. The present approaches are frequently used as a tool to
solve practical problems without any biological analogies.

1. Introduction. Nervous Systems and Neurons

Advances of the modern neural sciences can be traced back by new research techniques.
The first powerful tool invented Camillo Golgi around 1880 who proposed a selective
staining of nervefibres by bichromat silver reaction. The coloring technique of Golgi
was ingeniously applied by Ramon y Cajal who analysed extensively the human central
nervous system. He succeeded to prove that the network of nerve fibers is not a continuous
tissue but that it is actually composed of a vast number of distinct interconnected cellular
units, the neurons. In 1906 Golgi and Ramon y Cajal shared the Nobel prize in medicine
for their discoveries.

The detailed investigation of the structure of neural cells was enabled by the invention
of electron microscope around 1940. It was found that all neurons are constructed from
the same basic parts. From the bulbous cell body called soma project several root-like
extensions, the dendrites, as well as a single long tubular fiber called axon. At its end
axon branches into strands and substrands with button-like endings called synapses. The
axon of a typical neuron makes a few thousand of synapses. The size of the soma of a
typical neuron is about 10 – 80 µm, while dendrites and axons have a diameter of several
µm. The total length of neurons shows great variations from 0.01 mm to 1 m depending
on their location.

The axon’s purpose is the transmission of the generated neural activity to other neu-
rons via synapses. The synapses are located either directly at the soma or at the dendrites
of the subsequent neurons, i. e. the dendrites serve as receptors of incoming signals. At the

2

synapse the two neurons are separated by a tiny gap only about 0.2 µm wide. In relation
to the synapse the structures are called presynaptic and postsynaptic, e. g. presynaptic
neuron, postsynaptic membrane etc.

Nervous signals are of electrical nature. In the state of inactivity the interior of
the neuron, the protoplasm, is negatively charged against the surrounding neural liquid.
This resting potential of about −70 mV is caused by a selective permeability of the cell
membrane which is impenetrable for Na+ ions. The resulting deficiency of positive ions
in the protoplasm is responsible for its negative charge.

Signals arriving from the synaptic connections may result in a transient weakening, or
depolarization, of the resting potential. When the polarization is reduced to a critical level
of approximately −60 mV, the membrane suddenly loses its impermeability against Na+

ions which then enter into the protoplasm and neutralize the negative internal potential
of the neuron. The quick discharge, called the spike or action potential, is followed by a
gradual recovery of the membrane properties and by the corresponding regeneration of the
negative resting potential. During this recovery period of several miliseconds the neuron
remains incapable of further excitation. Let us remark that in 1963 Sir John Eccles, Alan
Lloyd Hodgkin and Andrew Huxley were jointly awarded the Nobel prize in medicine for
their detailed studies of the electrical signal transmission in the nervous system.

The discharge, which initially occurs in the cell body, then propagates along the axon
to the synapses without decay since the depolarization of each new segment of the axon
is always complete. This all-or-nothing rule resembling the properties of the binary elec-
tronic circuits was a strong motivation for the first simple model of a neuron as a binary
threshold unit – proposed by McCulloch and Pitts in 1943. However the intensity of a
nervous signal can be coded by the output frequency of spikes in the range from 1 to
about 100 Hz because the interval between two electrical spikes can take any value longer
than the regeneration period.

When the spike signal arrives at the synapse, special substances called neurotransmitters
(e. g. acetylcholine) are released into the synaptic cleft from tiny vesicles contained in the
endplate. The transmitter molecules reach the postsynaptic membrane within about 0.5
ms and modify its conductance for certain ions (Na+, K+, Cl−, etc.). The arising flows
of ions change the local postsynaptic potential. In case of depolarization the synapse is
termed excitatory, in case of increased polarization the synapse is called inhibitory, since
it counteracts excitation of the neuron. According to the so called Dale’s law all the
synaptic endings of an axon are either of an excitatory or an inhibitory nature. There
are also significant structural differences between those two types of synapses. In 1936
Sir Henry Dale shared the Nobel prize in medicine with Otto Loewi, who discovered the
chemical transmission of nerve signals at the synapse.

Just as each axon sends synapses to the dendrites and bodies of a number of down-
stream (efferent) neurons, so is each neuron connected to many upstream (afferent) neu-
rons which transmit their signals to it. The soma of a neuron acts as a kind “summing”
device which adds the local depolarizing (or polarizing) effects of different synapses. The
depolarizing effect of a synapse decays with a characteristic time of 5 – 10 ms and therefore
the excitatory effects of successive spikes may accumulate at the same synapse. A high
rate of repetition of spikes can therefore express a large intensity of the signal. When
the total magnitude of the depolarization exceeds the threshold of about 10 mV, i. e. the
potential in the cell body achieves the critical level of −60 mV, the neuron “fires” and
generates an electrical spike.

3

In principle, a single synapse can cause a neuron to fire, though the depolarizing
contribution of the synapses is generally diminishing with the increasing distance of their
location from the cell body. At the other hand a synapse placed at a thin dendritic
branch is more likely to trigger a spreading depolarization vave with the resulting spike.
The influence of a given synapse may depend on many different aspects in a complex
way but the following three factors seem to play a dominant role: the inherent strength
of depolarizing effect of the synapse, its location with respect to the cell body and the
repetition rate of the arriving spikes.

There is a great deal of evidence that the inherent strength of a synapse is not fixed
but that it is changing in time in dependence on the activity of both the presynaptic- and
postsynaptic neuron. According to a hypothesis originally postulated by Donald Hebb it
is assumed that:

When an axon of cell A is near enough to excite a cell B and repeatedly or persistently
takes part in firing it, some growth process or metabolic changes take place in one or both
cells such that A’s efficiency as one of the cells firing B, is increased. (cf. Hebb (1949),
p. 62, see also Adaptive Systems.)

In other words, an active synapse which repeatedly triggers the activation of its post-
synaptic neuron will grow in strength while others will gradually weaken. The mechanisms
of synaptic plasticity more-or-less exactly corresponding to the above Hebb’s rule appear
to play a dominant role in the complex process of learning.

It should be emphasized that real neurons and neural systems involve many compli-
cations which have been ignored in the above selective and purpose-oriented description.
To illustrate our simplifications let us remark that

• the structural organization of human brain is very complex, only partly recognized
and still less understood,

• at different locations in the brain there are usually different types of neurons with
specific properties (e. g. receptor neuron, motor neuron, interneuron etc),

• there are qualitatively different types of synapses (e. g. axo-somatic, axo-dendritic,
axo-axonal, dendro-dendritic) with unknown properties and unclear meaning,

• the speed of propagation of the discharge signal along the axon is increased by
electrically insulating myelin sheath-segments,

• more than 20 chemically different neurotransmitters were identified in the last
decades,

• the excitatory and inhibitory effects of synapses are added in the neuron in a complex
way, nonlinearly in space and time with many unclear details,

• the mechanism of release of the neurotransmitter in the process of synaptical trans-
mission is widely accepted but the discussion about some important details is not
closed completely,

• there are many internal structural elements of neurons the role of which is not fully
recognized,

4

• there are mechanisms of a short-term synaptical plasticity (so called potentiation)
with unknown properties and unclear background and meaning.

In spite of the fact that neuron is not very accurate and rather unreliable functional
unit the global performance of the nervous system is surprisingly perfect. The brain is
robust and fault tolerant. Many neurons die daily without any significant consequence for
its performance. It is flexible. It can easily adjust to a new environment by “learning”. It
can deal with information that is fuzzy, probabilistic, noisy or inconsistent. It is able to
perform “creatively” in a way not previously trained. It is highly parallel, small, compact
and dissipates very little power. The brain outperforms standard computers except only in
tasks based on simple arithmetic. A good example is the processing of visual information:
a one-year-old baby is much better and faster at recognizing objects or faces than even
the most advanced AI system running on the fastest supercomputer (see Biological and
Computational Intelligence).

A fundamental question arises about the basic functional principles of the brain which
are robust and reliable enough to guarantee its outstanding properties (see also Adaptive
Systems, Biological and Computational Intelligence, Cybernetics and Artificial Intelli-
gence). Since the fifties it became increasingly obvious that the functioning of the brain
cannot be explained without understanding the functional principles of the interconnected
neural assemblies - the neural networks. Despite a great effort and many interesting re-
sults achieved in the last decades this problem remains a strong motivation for further
research of different neural network models and learning algorithms.

2. Perceptrons and More General Models of Neurons

An important task of the nervous system of all living beings is to provide reactions to
external stimuli. On the quality of these reactions depends the chance to survive in an
often hostile environment. Fixed preprogrammed reactions hardly provide such a chance
when the environment is subject to changes. It is therefore not surprising that the nervous
system developed in the process of evolution a peculiar but characteristic property, namely
the ability to learn adequate reactions (see Evolutionary Complex Systems and Adaptive
Systems).

Each reaction is a result of information processing characterized by a one-way flow
of information: from input sensors receiving external stimuli to neurons specifying the
reaction. In typical complex systems the input information is processed by several distinct
layers of neurons before it is fed to the output reactions – specifying layer. The networks
in which the information does not circulate but flows in one direction are called feed-
forward neural networks. In such networks the synaptic connections between the neurons
of different layers are usually asymmetric (in the sense that they have much more inputs
than outputs). The maximally asymmetric are the unidirectional networks where each
neuron has several inputs but only one output. The architecture of these networks reduces
to one or more trees where the leafs are sensoral inputs and the roots represent outputs (the
reactions; the outputs may further feed into specialized subnetworks which materialize the
reaction, e. g. to motor networks).

Let us start with the unidirectional networks where each neuron has only one output,
and consider one such neuron with K > 1 inputs. The input values x = (x1, . . . , xK)

5

may be binary numbers (e. g. the neuron detects whether an input amplitude exceeds
zero or not, for simplicity we put xk = 1 or xk = −1 for the k-th signal, 1 ≤ k ≤ K) or
real numbers (e. g. the neuron detects the amplitudes xk themselves, 1 ≤ k ≤ K). The
output of the neuron is a function F (x,w) of the input vector x and synaptic weights w =
(w1, . . . , wK) associating the inputs 1, . . . , K with the output. These weights represent a
memory of the neuron and they can be modified by using a feedback information about
the gains or losses caused by the outputs F (x,w) influenced by these weights. This
modification is called learning – the main object of study in neural networks.

The neuron output is usually of the form

F (x,w) = f (Σkwk xk) , (1)

where f(h) is a function of the synaptic potential

h = Σkwk xk

caused by the action of the input x (stimuli if the neuron is from the input layer, or
outputs of the K connected neurons of the previous layer, respectively). This potential
is a linear function of the inputs while the transfer function f(h) is usually a nonlinear
function of the potential. The standard choice is

f(h) = tanh(βh) =
1− exp{−2βh}
1 + exp{−2βh}

(2)

for some β > 0 (so-called sigmoidal function; it is skew-symmetric about h = 0, increasing
from −1 at h = −∞ to 1 at h =∞, with f(0) = 0 and the derivative f ′(0) = β), or the
limit of this function for β →∞,

f(h) = sgn(h) =

〈
1 if h ≥ 0

−1 if h < 0.
(3)

The continuous transfer function (2) is used when the inputs are continuous and the
jump function (3) is used when the inputs are binary. Note that the binary neuron
is preferred in the neurophysiology since in this case the inputs as well as output (3)
possess the features of the model of Mc Culloch and Pitts mentioned in Part 1. For
various computer information processing applications the continuous neuron with the
differentiable output (2) is more convenient.

The most distinguished feature of neurons is their ability to learn, i. e. to adapt their
memory (synaptic weights) to the state of environment. Suppose that

xt = (xt1, . . . , x
t
k)

are inputs of the neuron at time instants t = 1, 2, . . . , T , and that there exist a function
ϕ(x) specifying the best possible reactions of the neuron to arbitrary inputs x (correct
outputs). To optimize weights w at a fixed time t means to minimize the squared deviation

D(w) =
1

2
[f(h(w))− ϕ]2,

where f(h) is given by (2) and

h(w) ≡ ht(w) = Σkwk x
t
k, ϕ ≡ ϕt = ϕ(xt).

6

After standard application of the gradient method and using the derivative

ψt(w) = 1− f 2(ht(w))

of the function (2) at h = h(w) one obtains that

wt+1 = wt − εβ[f(ht(wt))− ϕt]ψt(wt)xt. (4)

This is an improvement of weights wt provided ε is small enough (otherwise one can
overshoot the global or local minimum of D(w)).

If D(w) is replaced by the sum of squared deviations

Dt(w) =
1

2
Σs≤t[f(hs(w))− ϕs]2

then the same argument as used above leads to the conclusion that

w+ = w − εβΣs≤t[f(hs(w))− ϕs]ψs(w)xs (5)

satisfies for 0 < ε� 1 the inequality Dt(w
+) < Dt(w). This justifies the recursive formula

wt+1 = wt + εtΣs≤t[f(hs(wt))− ϕs]ψs(wt)xs (6)

for improvement of weights at time t where εt decreases to 0 as t → ∞. This formula is
known in the literature as the perceptron learning rule.

If the inputs x1, x2, . . . are random, distributed by a probability law P and mutually
independent (or ergodic), then for large t and arbitrary w

2

t
Dt(w)

.
= E [f (Σkwk xk)− ϕ(x)]2

4
= e(w) for x ∼ P

is the neuron mean square error (MSE). Since f, ϕ and ψ are bounded functions, the
perceptron learning rule selects weights from a bounded set when the support of the law
P is bounded and εt = O(1/t) as t→∞. This together with the fact that e(wt+1) < e(wt)
implies that wt (or a subsequence of wt) has a limit w∞ as t→∞ which minimizes (locally
or globally) the MSE, i. e.

e(w∞) = inf
w
e(w).

The learning rule (6) is also known under the name synaptic plasticity law. It enables
the neuron to learn optimal reactions f (Σkw

∞
k xk) in an arbitrary environment (repre-

sented in the present context by the probability law P). If the environment (i. e. the law
P) changes and then remains for a relatively long period stable then the learning rule (6)
produces weights wt tending to a new limit w∞ which is optimal in the new environment.

The error reduction property of the learning rules (5) and (6) is justified only for
neurons with differentiable transfer functions f(h). It is thus not justified for the binary
neurons where f(h) is given by (3). The nondifferentiable transfer function (3) is a limit
of the differentiable function (2) for β → ∞. If ψs(w)

.
= c 6= 0 for a fixed w and large β

(which is satisfied by w from the neighborhood of w0 = (0, 0, . . . , 0) and c = 2) then one
can argue from (5) with ε = 1/(βc) that Dt(w

+) < Dt(w) for

w+ = w − Σs≤t[f(hs(ws))− ϕs]xs.

7

Replace in this formula f(hs) of (2) by f(hs) of (3), which can be justified by the assump-
tion that β is large. If w 6= w0 then we replace w by its close neighbor w0. As a result we
obtain that the sequence w+ = wt satisfies the recursive formula

wt+1 = wt − [f(ht(wt))− ϕt]xt (7)

=

〈
wt if f (Σkw

t
k x

t
k) = ϕ(xt)

wt + sign(ϕ(xt))xt if f (Σkw
t
k x

t
k) 6= ϕ(xt).

This formula is the well known binary perceptron learning rule.
It is seen from the derivation presented above that now the sequence wt can pretend

neither the general asymptotic optimality nor the convergence observed in the continuous
perceptrons. The only general pretension is that e(wt) < e(w) for t > 1 and w from the
close neighborhood of w0 = (0, 0, . . . , 0). Next we show that, nevertheless, in an important
class of situations the learning rule (7) is a synaptic plasticity law guaranteeing both the
asymptotic optimality and the convergence. But before going into these special details,
let us mention the following general terminological remarks.

Remarks. (i) The system with inputs x, synaptic memory w, output f (Σkwk xk) and
learning rules (6) or (7), called neuron, is of course not a cell of nervous system of a living
organism studied by Golgi and Ramon y Cajal, also called neuron. The term neuron in
the neural networks literature usually means a model of a class of the real world neurons.
The particular model mentioned at the beginning of this remark is known under the
name perceptron, following Rosenblatt who introduced both, the model and the name.
Perceptron (and, more generally, any model of neuron, see the definition of general neural
network in Part 3 below) is a particular case of an abstract mathematical machine called
automaton which receives inputs xt from an environment, produces outputs yt = Ft(x

t, wt)
depending on time t, inputs xt and a memory wt, and recursively innovates the memory
by a rule wt+1 = Gt(x

t, wt). Functions F (xt, wt) = f(ht) figuring in majority of all models
of neurons are given in (1) and the special perceptron examples of functions Gt(x

t, wt) or
G(xt, wt) are given in (6) and (7).

(ii) Let us point out that if x = (x1, . . . , xK) is extended by a dummy component
xK+1 = 1 and w = (w1, . . . , wk) is extended by a new variable wK+1 then h = Σkwk xk
figuring in (1) can be written as

h =
K∑
k=1

wk xk − θ where θ = −wK+1

so that the perceptron output is of the form

f (Σkwk xk) = f

(
K∑
k=1

wk xk − θ
)
. (8)

Here the right-hand sum is the synaptic potential and θ is a threshold for this potential.
In this extended form the perceptron is more flexible and better formalizes the McCulloch
and Pitt’s model mentioned in Part 1.

(iii) Finally, let us remark that the learning rules (6) and (7) are nothing but formalized
variants of the Hebb’s rule formulated in Part 1: The weights wt+1 “grow” in positive or

8

negative direction depending on the reaction achieved by wt and the intensity of the
“growth process” depends on the inadequacy of this reaction. E. g., in (7) there is no
“growth” (i. e. wt+1 = wt) if the reaction produced by wt is correct.

Now we are prepared to analyze the asymptotic optimality of binary perceptrons.
These properties were systematically studied in the early 60’ies by Rosenblatt, Novikoff,
Nillson and some other authors. An important result of this type is due to Rosenblatt.
He proved for the perceptrons extended in the sense of (8) that if

ϕ(x) = f(H(x)) = sgn(H(x)) (cf. (3)), (9)

where H(x1, x2, . . . , xK+1) is linear in all its variables, i. e. H(x) = 0 is a hyperplane in
Rk then, after finitely many steps, the learning rule (7) enables correctly represent input
vectors from any finite set {x1, x2, . . . , xT} (if more than T learning steps are needed then
it is assumed that xT+1 = x1, xT+2 = x2 etc). More precisely, for arbitrary initial weights
w1 there exists 1 ≤ t1 < ∞ such that after t1 learning steps the perceptron achieves
weights w = wt1 with the property

f (Σkwk xk) = ϕ(x) for all x ∈ {x1, . . . , xT}.

This means that either wt1 = w, i. e. the unknown weights w are correctly established by
the learning, or wt differs from w but classifies the vectors xt, 1 ≤ t ≤ T , in precisely the
same way as does w.

This result is often called simply a perceptron convergence theorem. Let us emphasize
that it guarantees an asymptotic optimality (the errorless outputs) for all binary percep-
trons in the environments where the correct reactions function ϕ is pseudolinear in the
sense specified in (9).

In the next examples we illustrate the perceptron convergence theorem by letting
simple perceptrons with binary input vectors x = (x1, x2) to learn arbitrary Boolean
functions ϕ(x1, x2). Such functions characterize the truth values of composite propositions
of the type X = X1 RX2 where R is a logical relation between two propositions, provided
x1, x2 are the truth values of X1, X2. Well known examples such relations are OR, AND
and IMPLIES. For our purposes the “true” will be represented by the value 1 and “false”
by −1.

Example 1: Proposition X1 ORX2. The four possible values xt = (xt1, x
t
2), 1 ≤ t ≤ 4,

of x = (x1, x2) are presented in the first row of Table 1 and the corresponding values of
ϕ(xt) in the last row.

9

t 1 2 3 4 5 6

xt -1,-1 -1,1 1,-1 1, 1 -1,-1 -1,1

wt 0,0 1,1 1,1 1,1 1,1 1,1

ht 0 0 0 2 -2 0

f t 1 1 1 1 -1 1

ϕ(xt) -1 1 1 1 1 1

Table 1: Detailed record of the dynamics of the perceptron of Example 1
with the initial weights w1 = (0, 0) given in the t = 1 column. We see that the
weights wt remain constant, equal (1,1), for 2 ≤ t ≤ 5, and that the columns
for t ≥ 6 coincide with those for t − 4. Therefore this perceptron learns the
correct representation of the Boolean function of X1 OR X2 at the time t = 2,
after just one learning step.

We define x5 = x1, x6 = x2 etc. In order to provide a possibility to study the dynamics
of the perceptron under the learning rule (7), we present also the weights wt = (wt1, w

t
2)

and the values of

ht = Σ2
1w

t
k x

t, f t = f(ht) = sign(ht) and ϕ(xt).

The function ϕ(x1, x2) = x1 ∨ x2 obviously satisfies the condition (9). The results are
commented in the text to the table.

Similar result as in Example 1 one obtains also for the proposition X1 AND X2. The
only difference is that here ϕ(x1, x2) = x1 ∧ x2 does not satisfy (9) when the hyperplane
H(x) = 0 is passing through the origin. Thus we need to introduce the dummy variable
xt3 ≡ 1 (add the constant coordinate 1 in the xt-row of Table 1 and one more 0 in
the first position of the wt-row, and then calculate in accordance with (7) the weights
wt = (wt1, w

t
2, w

t
3) in the remaining positions of this row). In this manner one obtains that

the Boolean function of this proposition is again correctly represented at t ≥ 2, after one
learning step.

Example 2: Proposition X1 IMPLIESX2. Here we use the same inputs xt1, x
t
2 as

above, including the dummy component xt3 ≡ 1. Consequently we use the extended 3-D
weights wt = (wt1, w

t
2, w

t
3), which means that the summation for ht in Example 1 extends

from 1 to 3. The results are in Table .

10

t 1 2 3 4 5 6 7

xt -1,-1,-1 -1,1,1 1,-1,1 1,1,1 -1,-1,1 -1,1,1 1,-1,1

wt 0,0,0 0,0,0 0,0,0 -1,1,-1 0,2,0 -1,1,1 -1,1,1

ht 0 0 0 -1 -2 3 -1

f t 1 1 1 -1 -1 1 -1

ϕ(xt) 1 1 1 1 1 1 -1

Table 2: Detailed record of the dynamics of the perceptron of Example 2
with the initial weights w1 = (0, 0, 0) visible in the t = 1 column. After
calculating the columns for t ≥ 8, one obtains constant weights wt = (−1, 1, 1)
for 6 ≤ t ≤ 9, and also columns which for t ≥ 10 coincide with those for
t − 4. Therefore this perceptron correctly represents the Boolean function of
X1 IMPLIES X2 in all time instants t ≥ 6, after 5 learning steps.

Example 3: Proposition X1 XORX2. The relation XOR means EXCLUSIVE–OR in
the sense that ϕ(x1, x2) = 1 if and only if x1∨x2 = 1 and x1∧x2 = −1. Thus now a table
analogous to Table differs from Tables 1 and 2 in the bottom line, which now reads:

t 1 2 3 4 5 6 7

ϕ(xt) -1 1 1 -1 -1 1 1

After evaluating such a new table with w1 = (0, 0, 0) one obtains that all wt, 1 ≤ t ≤ 4,
are mutually different and the columns for t ≥ 5 coincide with those for t − 4. Thus
the weights wt vary periodically for t ≥ 1 with the period T = 4. This corresponds
very well to the fact that the condition (9) of the perceptron convergence theorem is not
satisfied by the present ϕ(x1, x2): the points x = (1,−1) and x = (−1, 1) with ϕ(x) = 1
cannot be separated in R2 by a hyperplane from the remaining two points x = (1, 1) and
x = (−1,−1) for which ϕ(x) = −1.

3. Multilayered Perceptrons and General Neural Networks

In Example 3 we argued that the XOR problem cannot be solved by simple perceptrons
since the input stimuli xt with the property ϕ(xt) = 1 are not linearly separable from
those with ϕ(xt) = −1. In the next example we show that this problem can be solved by
a unidirectional network consisting of three perceptrons.

Example 4: Proposition X1 XORX2 revisited. Consider xt = (xt1, x
t
2, 1) where

xt1, x
t
2 are the same truth values of X1, X2 as in Examples 1 – 3. Let the input stimuli xt

feed at discrete time instants t = 1, 2, . . . simultaneously two parallel input perceptrons
indexed by j = 1, 2, with synaptic weights

wtj = (wtjk : 1 ≤ k ≤ 3).

11

It holds
h
t

j
4
= Σ3

1w
t
jk x

t
k = Σ2

1w
t
jk x

t
k − θ

t

j cf. (8), (10)

where θ
t

j = −wtj3 are thresholds for the synaptic potentials h
t

j leading to the outputs

xtj = f(h
t

j) = sgn
(
Σ3

1wjk x
t
k

)
, j = 1, 2. (11)

Outputs xt = (xt1, x
t
2, 1) of the input perceptrons (extended by the dummy xt3 ≡ 1) are

assumed to feed inputs of an output perceptron with synaptic weights wt = (wtk : 1 ≤ k ≤
3) and outputs

f t = f(ht) = sgn
(
Σ3

1w
t
k x

t
k

)
. (12)

Thus we have a feed-forward network of three perceptrons organized in two layers: two
perceptrons in the input layer and one in the output layer. This network is fed from
outside by a sequence of stimuli xt describing the truth values of propositions X1, X2 and
responds to these stimuli by the outputs f t defined by (12). These responses are correct
if f t = ϕ(xt) and incorrect if f t 6= ϕ(xt).

The state of the network is completely specified any time t by the quadruplet (xt, wt1, w
t
2, w

t).
To achieve this end we need to specify the memories (wt1, w

t
2, w

t). This can be done by
considering arbitrary initial

(w1
1, w

1
2, w

1)

and subsequently applying the recursive binary perceptron learning rule (7).
To be precise, assume that wt+1

j is defined by (7) for

wt = wtj and ϕ(xt) = ϕj(x
t),

where ϕj is defined by means of the outputs (11) and function ϕ as follows

ϕj(x
t)

〈 = xtj if f t = ϕ(xt)

6= xtj if f t 6= ϕ(xt).

We see that the outputs of both the input perceptrons are considered to be incorrect (i. e.
ϕj(x

t) 6= xtj for j = 1, 2) if the whole network output f t is incorrect. This is a simple
example of learning by an error back-propagation. Let us notice that the rule ϕj(x

t) 6= xtj
uniquely determines ϕj(x

t) in the sense that ϕj(x
t) = 1 if xtj = −1 and ϕj(x

t) = −1 if
xtj = 1.

As to the output perceptron, it is assumed to be learned by (7) for the truth value func-
tion ϕ under consideration and xt = xt. The dynamics of the network under consideration
for one possible specification of initial weights wt1, w

t
2 and wt is in Table 3.

12

t 1 2 3 4 5 6

xt -1,-1,1 -1,1,1 1,-1,1 1,1,1 -1,-1,1 -1,1,1

wt1 2,0,0 2,0,0 1,1,1 1,1,1 1,1,1 1,1,1

h
t

1 -2 -2 1 3 -1 1

xt1 -1 -1 1 1 -1 1

ϕt1 -1 1 1 1 -1 -1

wt2 0,2,0 0,2,0 1,1,-1 1,1,-1 1,1,-1 1,1,-1

h
t

2 -1 2 -1 1 -3 -1

xt2 -1 1 -1 1 -1 -1

ϕt2 -1 -1 -1 1 -1 -1

xt -1,-1,1 -1,1,1 1,-1,1 1,1,1 -1,-1,1 1,-1,1

wt -3,-2,-3 3,-2,-3 2,-1,-2 2,-1,-2 2,-1,-2 2,-1,-2

ht -4 -8 1 -1 -1 1

f t -1 -1 1 -1 -1 1

ϕ(xt) -1 1 1 -1 -1 1

Table 3: Detailed record of the dynamics of the network of 3 perceptrons of Example 4,
with the error back-propagation learning, in time t = 1, 2, . . ., for the initial weights
w1

1, w1
2, w1 given in the first column. The table is divided horizontally into three

blocks which separately describe the dynamics of individual perceptrons in the same
way as used in Tables 1 and 2. The row xt contains common inputs for the first two
perceptrons, and the row xt the inputs for the last perceptron. This network is learned
to solve the XOR problem at t = 3, after two learning steps.

We see from Table that f 6 = ϕ6, so that w7
i = w6 and w7 = w6. But (w6

i , w
6) =

(w3
i , w

3) and also x7 = x3. Therefore the quadruplets (xt, wt1, w
t
2, w

t) with t = 7 and t = 3
coincide. This coincidence can be extended by induction to the quadruplets with any t
and t + 4. Since the weights wt1, w

t
2, w

t are constant for all 3 ≤ t ≤ 6, this means that
they remain constant for all t ≥ 3. This means that the network was learned to solve the
XOR problem correctly after two learning steps. Note, however, that the learning under
consideration does not guarantee for arbitrary initial weights to find such a solution.

The network of Example 4 with perceptrons arranged in two layers easily generalizes
to networks with arbitrary (binary or continuous) perceptrons arranged in three layers.
The first layer contains J ≥ 2 perceptrons with common inputs x = (x1, . . . , xk) and
outputs

xj = f(hj), hj = Σkwjk xk − θj, j = 1, . . . , J.

Vector x = (x1, . . . , xJ) of the outputs of these perceptrons is a common input of I ≥ 2

13

perceptrons situated in the second layer. The outputs of the second layer perceptrons are

xi = f(hj), hj = Σjwij xj − θj.

Finally, vector x = (x1, . . . , xI) is a common input of L ≥ 1 perceptrons of the third layer
where the outputs are

f(h`), h` = Σiw`i xi − θ`, ` = 1, . . . , L. (13)

This network is an example of 3-layered perceptron where the first layer is called an
input layer, the second layer is a hidden layer and the third layer is an output layer.

By inserting between the input and output layer more than one hidden layer we obtain
a neural network called multilayered perceptron. If in this network the neurons of the
perceptron type, with single outputs f

(∑
γ wβγ xγ − θβ

)
, are replaced by neurons with

multiple outputs fα
(∑

γ wαβγ − θαβ
)
, then we speak about cybernetic networks.

A general neural network can be defined rigorously as a collection of automata indexed
by 1 ≤ i < ∞ which are partially (or completely) connected by oriented links, where:
(i) a real-valued weight wik is associated with each link i← k, (ii) a state variable xi and
a real-valued bias θi are associated with the i-th automaton, and (iii) the output to all
outgoing links i→ j is a real-valued function fi(xk, wik, θi : k 6= i), where k 6= i runs over
all incoming links i← k. The set {xk : k 6= i} represents the input of the i-th automaton,
{wik, θi : k 6= i} represents its memory and fi(xk, wik, θi : k 6= i) the output. Usually xk
are real numbers and

fi(xk, wik, θi : k 6= i) = f (Σkwik xk − θi) .

A feed-forward network is one whose links form no closed paths.

Automata are abstract mathematical machines with a memory which can “learn”
in the sense that they are able to modify their memory (see Cybernetics and Artificial
Intelligence and Cybernetics and the Integration of Knowledges). The automata figuring
in the neural networks are called simply neurons. Perceptrons investigated in Part 2
are examples of neurons in this sense of word. Multilayered perceptrons or cybernetic
networks mentioned above are examples of general neural networks with the feed-forward
property. In the rest of this part we restrict ourselves to multilayered perceptrons. Other
important types of general neural networks are discussed in the following parts.

The basic problem of multilayered perceptrons is to find a learning which for given
inputs xt minimizes the average squared deviation

D =
1

T

T∑
t=1

L∑
`=1

[f(ht`)− ϕ`(xt)]2 (14)

where f(ht`), 1 ≤ ` ≤ L, are the network outputs (cf. e.g. (13) above) and ϕ`(x
t), 1 ≤

` ≤ L, are desired correct outputs. Since ht` depends on several layers of weights and
thresholds, it is hard to generalize to this case the perceptron learning rule of (6), and
even less pleasing is the numerical implementation of such a generalization.

A numerically simple recursive minimization of the deviation D of (14) is achieved
by the so-called error back-propagation rule. One variant of such a rule for binary per-
ceptrons has already been presented in Example 4. As mentioned there, that variant

14

asymptotically minimizes the squared deviation only in special cases. However, for con-
tinuous perceptrons with differentiable transfer functions (2) such a rule leads to (local
or global) minima of D. Roughly speaking, the error back-propagation rule consists of
a subsequent application of a rule similar to the perceptron rule (6) to the individual
network layers, starting with the output layer and finishing with the input layer (i. e.
the application is directed “backward” trough the network, against the orientation of the
synaptic links). The iterative character of the algorithm of error back-propagation is well
suited for hardware as well as software computer realizations.

Another important problem of multilayered perceptrons is what functions can be rep-
resented (i. e. learned and practically realized) by these networks. We shall discuss sepa-
rately the binary and continuous perceptron networks. Functions of binary variables are
known as Boolean (or logical) functions. Examples 1 and 2 introduced simple Boolean
functions of two variables which can be represented by one perceptron. Example 3 in-
troduced a more complicated example where one perceptron is not enough. As shown in
Example 4, to this end is needed a 2-layered network of 3 perceptrons. In general, any
Boolean function of n variables can be represented by a network of binary perceptrons
with one hidden layer and a single output. As to the functions of n continuous variables,
all of them which are continuous and absolutely bounded by 1 can be represented by a
network of continuous perceptrons with one hidden layer and a single output. These re-
sults mean that perceptron networks can in principle learn discrete as well as continuous
laws of nature from sufficiently representative empirical data. Due to this universal flexi-
bility of perceptron networks, they found important practical applications are in pattern
recognition, statistical decisions, control etc. (see Cybernetics and Artificial Intelligence
and Biological and Computational Intelligence).

4. Radial Basis Function Networks

This and the next three parts describe important particular types of the general neural
networks defined in Part 3. Notation used below is affine but not identical with that used
in the previous parts. E.g. the dimension of input vectors x, denoted above by K, is
denoted by N etc. This change of notation is motivated by our attempt to be conform
with the majority of neural network literature, where the notation is not fully consistent
and varies from one type of the network to another. We believe that the notational
conventions used here will be helpful for the readers entering for the first time the field of
neural networks.

The design of radial basis function (RBF) neural network can be understood as a
curve fitting (approximation) problem in a high-dimensional space (see also Biological
and Computational Intelligence). In other words the goal of learning is to find a surface
in a multidimensional space that provides the best fit to the training data. The idea of
approximation by radial basis functions can be traced back to the method of potential
functions. From the statistical point of view, there is a close relation to the kernel-type
probability density estimation introduced by Parzen and to the approximation of density
functions by finite mixtures (for detailed references see Haykin).

A radial basis function network (RBFN) consists of several layers. The input layer is

15

a collection of N data sources (input neurons) with real outputs,

x = (x1, x2, . . . , xN) ∈ X , X ⊂ IRN . (15)

The second (hidden) layer consists of M nonnegative radial basis functions

F (x|m), x ∈ X , m ∈M, M = {1, 2, . . . ,M}, (16)

representing special neurons. “Radial” means that the network basis functions F (·|m),m ∈
M are radially symmetric about some points cm ∈ X , e. g. X = IRN and

F (x|m) = F
(
x− cm
σm

)
, m ∈M, (17)

where σm > 0 and F : IRN → IR is symmetric about 0 ∈ IRN . The third linear layer
performs a linear transformation of the hidden layer outputs. This transformation is
specified by a (J ×M)–matrix

W = (wjm)j∈J ,m∈M

of nonnegative weights. The outputs are thus weighted sums of RBF’s,

yj(x) =
∑
m∈M

wjmF (x|m), x ∈ X , j ∈ J , J = {1, 2, . . . , J}. (18)

In most cases only the linear layer (i.e. the weight matrix W) is trained in a supervised
way (i.e. using correct outputs), whereas the training of the hidden layer is usually
unsupervised. For this and other reasons the underlying neural structures are also referred
to as hybrid learning networks, counterpropagation networks or hierarchical feature map
classifiers.

Usually the RBF’s F (x|m) are symmetric multivariate normal on X = IRN with means
µm, diagonal covariance matrices, common variances σ2 and with a normed output.

yj(x) =
wjF (x|µj, σ)∑

m∈MwmF (x|µm, σ)
x ∈ IRN , j ∈ J , (19)

where wm are nonnegative weights. This formula may also be viewed as a generalization
of the winner-take-all rule since the maximal output value suppresses the other outputs
by simple norming.

The learning algorithms of RBF networks usually apply different techniques and “time-
scales” to different layers as they perform different tasks: the hidden layer is modified
slowly in accordance with some nonsupervised nonlinear optimization strategy whereas
the output layer’s weights are adjusted rapidly through a supervised linear optimization
technique (see also Adaptive Systems).

At the hidden layer the simplest approach is to assume fixed RBF defining the hidden
units whereby the location of the centers may be chosen randomly. An alternative way is
to use the standard k-nearest-neighbor rule. Another possibility is to fix the form of RBF
(e. g. Gaussian) and optimize their location by placing the centers only in the regions
containing significant data. For the supervised learning of weights of the output layer we
may use an error-correction learning rule such as the least-mean-square (LMS) algorithm.

16

In the most general form we may optimize all the free parameters of the RBF network
e. g. by applying gradient descent to the LMS criterion.

5. Probabilistic Neural Networks

The probabilistic approach to neural networks naturally evolves from the general frame-
work of statistical classification. The basic idea of probabilistic neural networks (PNN) is
to approximate the class-conditional probability distributions by means of a distribution
mixture whereby the components of mixtures correspond to formal neurons.

Let us recall that the standard approaches to neural networks usually start with some
neural network model which is then optimized with respect to some parameters (see also
Biological and Computational Intelligence). In case of PNN we consider first a general
classification problem and the model of neural network is obtained by interpretation of
the final statistically correct solution.

There is a similarity between PNN and the RBF neural networks (cf. previous Section).
However, the RBF’s are usually optimized for the sake of a multivariate interpolation or
approximation of some output variables whereas the purpose of estimating distribution
mixtures is the Bayesian classification of observations. Also the simplifying assumption of
radial symmetry is not necessary in case of mixture components since the EM algorithm
as an optimization tool is usually applicable in full generality.

In particular we assume that there is a finite set of classes Ω with a priori probabilities

p(ω), ω ∈ Ω, Ω = {ω1, ω2, . . . , ωC}

and random observations X from a space X are characterized by class–conditional prob-
ability density functions

P (x|ω), x = (x1, x2, . . . , xN) ∈ X , ω ∈ Ω.

All statistical information about the set of classes Ω given some observation x ∈ X is
expressed by the Bayes formula for a posteriori probabilities

p(ω|x) =
P (x|ω)p(ω)

P (x)
, ω ∈ Ω, P (x) =

∑
ω∈Ω

P (x|ω)p(ω) (20)

where P (x) is the unconditional joint probability density of x. We assume that the poste-
rior distribution p(ω|x) is the final solution of the statistical decision problem {X , P (·|ω)p(ω), ω ∈
Ω}. Thus, to solve the problem, we have to estimate the unknown densities, as a rule.

Applying method of mixtures we approximate the conditional densities P (x|ω) by
finite mixtures but, unlike usual approaches, we assume that the components belong to a
common pool. In particular, we assume that there is a finite set F = {F (·|m),m ∈ M}
of probability density functions on X such that each conditional density P (x|ω) may be
expressed as a convex combination of densities from F :

P (x|ω) =
∑
m∈M

F (x|m)f(m|ω), M = {1, 2, . . . ,M}, ω ∈ Ω, x ∈ X . (21)

Here f(m|ω) ≥ 0 are some conditional probabilistic weights and the components F (x|m)
may be shared by all class-conditional densities P (x|ω).

17

By using substitution (21) we can express the joint probability density P (x) in the
form

P (x) =
∑
m∈M

F (x|m)f(m), x ∈ X , f(m) =
∑
ω∈Ω

f(m|ω)p(ω). (22)

As it can be seen, the set of shared component densities F (x|m) naturally introduces
an additional “descriptive” decision problem {X , F (·|m)f(m),m ∈ M} with a priori
probabilities f(m) whereby each component in the mixture (22) may correspond e. g. to
an elementary situation on the input. Given an observation x ∈ X , the a posteriori
probabilities of components

f(m|x) =
F (x|m)f(m)

P (x)
, m ∈M, x ∈ X (23)

may be interpreted as a measure of presence of different elementary situations on input.
Formally, each neuron of a given layer realizes a coordinate function of a vector trans-

form T mapping the input space X into the space of output variables Y . We denote

T : X → Y , Y ⊂ IRM , y = T(x) = (T1(x),T2(x), . . . ,TM(x)) ∈ Y . (24)

It has been shown that the transform defined by Eqs.

ym = Tm(x) = log f(m|x), x ∈ X , m ∈M (25)

belongs to a class of information preserving transforms minimizing the entropy of the
output space Y . In other words, the transform (24), (25) preserves the statistical Shan-
non information about the descriptive decision problem {X , F (.|m)f(m),m ∈ M} and,
simultaneously, minimizes the Shannon entropy H(Y) of the transformed distribution on
the output space Y . It is easy to verify that analogous assertions hold for the original
decision problem {X , P (.|ω)p(ω), ω ∈ Ω}, too.

Note that the information preserving transform (24),(25) actually “unifies” the points
x ∈ X with identical posterior distributions f(m|x) and therefore the arising partition of
the input space X doesn’t cause any information loss. Instead of logarithm we could use
any bijective function but the logarithmic coordinate function is important as it makes
the contributions from different input variables additive in some important cases.

The principle of information preserving transform can be used for a sequential design
of multilayer neural networks by transforming the descriptive decision problem repeatedly
along with the training data.

Let us recall that one of the most natural features of neural networks is the possibility
to connect any particular neuron with arbitrary subset of input variables. Unfortunately,
in probabilistic neural networks this simple possibility is usually not compatible with a
statistically correct decision-making. If we assume that each layer of a neural network
is described by a mixture of component densities corresponding to neurons, then all the
components must be defined on the same input space to satisfy the norming property∫

X
P (x) dx =

∑
m∈M

f(m)
∫
X
F (x|m) dx = 1.

Any component F (x|m) defined on a subspace of X would cause the above integral to
be infinite. Thus, all neurons must be connected with all input variables and, in this

18

sense, the necessity of a complete interconnection of neurons with all inputs is a direct
consequence of the probabilistic description.

The undesirable complete interconnection property can be avoided by a distribution
mixture including structural parameters. Making substitution

F (x|m) = F (x|0)G(x|m,φm), m ∈M (26)

in Eq. (22), we obtain

P (x) =
∑
m∈M

F (x|0)G(x|m,φm)f(m), F (x|0) =
∏
n∈N

fn(xn|0) (27)

where F (x|0) is a nonzero “background” probability density usually defined as a product
of marginals, i. e. fn(xn|0) = Pn(xn). The component functions G(x|m,φm) include
additional binary structural parameters φmn ∈ {0, 1}:

G(x|m,φm) =
∏
n∈N

[
fn(xn|m)

fn(xn|0)

]φmn

, φm = (φm1, . . . , φmN) ∈ {0, 1}N . (28)

By setting the parameter φmn = 0 any component- specific density function fn(xn|m) can
be substituted by the respective univariate background density fn(xn|0). We assume the
number of the nonzero structural parameters φmn to be fixed and equal to r, (1 ≤ r ≤
MN), i. e. we can write

F (x|m) =
∏
n∈N

fn(xn|m)φmnfn(xn|0)1−φmn ,
∑

m∈M n∈N
φmn = r. (29)

The component functions G(x|m,φm) may be defined on different subspaces and simul-
taneously, the complexity and “structure” of the finite mixture (27) can be simplified by
means of the binary parameters φmn set to zero.

It is an important aspect of the mixture (27) that the background probability density
F (x|0) cancels in Eq. (23):

f(m|x) =
G(x|m,φm)f(m)∑
j∈MG(x|j, φj)f(j)

(30)

and similarly in the Bayes formula (20)

p(ω|x) =
p(ω)

∑
m∈MG(x|m,φm)f(m|ω)∑
j∈MG(x|j, φj)f(j)

. (31)

Therefore, the a posteriori probability p(ω|x) is proportional to weighted sum of the
component functions G(x|m,φm) which can be defined on different subspaces:

p(ω|x) ≈ p(ω)
∑
m∈M

G(x|m,φm)f(m|ω). (32)

In this way the computation of the a posteriori probabilities p(ω|x) may be confined
to the relevant variables. In other words, the input connections of a single neuron can
be confined to an optimal subset of input variables (neurons) by means of the binary
parameters φmn.

19

The optimal choice of structural parameters φmn can be included into the expectation-
maximization (EM) algorithm.

Example 5. Recently the structural PNN was applied to recognition of totally uncon-
strained handwritten numerals from the database of Concordia University in Montreal.
The problem was solved in the original space of nonreduced dimension N=1024 (binary
32x32 raster). In computational experiments with randomly initialized mixture models
(27) we obtained repeatedly recognition accuracy which is comparable with the results
reported in literature. Unlike similar published solutions we didn’t use any preceding
feature extraction or feature selection which may essentially improve the classification
accuracy.

6. Self–Organizing Maps of Kohonen

The idea of self-organizing map (SOM) proposed by Kohonen belongs to the most influ-
ential approaches to artificial neural networks. The monograph of Kohonen contains a list
of about 1500 papers written on SOM since 1980, with numerous practical applications.
Roughly speaking the SOM algorithm constructs a topology preserving representation
of the overall probability distribution of input data. The process of self-organization is
controlled by topological properties of a suitably chosen two-dimensional array (lattice)
of nodes (neurons).

In particular, the self-organizing map defines a topology preserving mapping from the
real input space IRN onto a (typically) two-dimensional array of nodes {rm ∈ IR2,m ∈
M}. Every node rm,m ∈M of the array is associated with a reference vector

µm = (µm1, µm2, . . . , µmN) ∈ IRN , m ∈M (33)

being adapted during a competitive learning process.
It is assumed that the input vectors x ∈ IRN are received sequentially, one at a time.

In the first step of the SOM algorithm the location of “response” is determined as the
node j ∈ M with the reference vector µj having the smallest distance from the input x.
Usually, the best matching node is defined in terms of Euclidean distance:

j = j(x) = arg min
m∈M
{||x− µm||}. (34)

In the second step the best matching reference vector µj of the winning node j and the
reference vectors of the neighboring nodes are adapted according to Eqs.

µ(t+1)
m = µ(t)

m + hmj(t)(x
(t) − µ(t)

m), m ∈M, t = 0, 1, 2, . . . , (35)

i. e. they are moved towards the input vector x(t). Here hmj(t) is so-called neighborhood
function of the j-th node. In other words, the choice of reference vectors to be modified
is controlled by the function hmj(t) defined externally over the two-dimensional array of
nodes and parametrically dependent on the time t. The initial values of reference vectors
µ(0)
m ,m ∈ M can be chosen arbitrarily. If, as in our case, only a given finite set S of

observations is available, the infinite input sequence is obtained by applying the set S
repeatedly in cycles, i. e.

{x(t)}∞t=0, x(t) = x(k) ∈ S, k = (t mod τ) + 1

20

For convergence it is necessary that hmj(t) → 0 when t → ∞. Also it should hold
hmj(t) → 0 with increasing distance of the nodes m, j ∈ M. A widely used form of
relation is the following Gaussian function:

hmj(t) = α(t) exp

{
−||rm − rj||

2

2σ2(t)

}
(36)

where rm, rj ∈ IR2 are location vectors of the nodes m, j ∈ M and the learning-rate
parameters α(t), σ(t) used to update the reference vector are monotonically decreasing
functions. The success of map formation (consisting of an ordering and convergence
phase) is critically dependent on the selection of the main parameters of the algorithm,
namely, the learning-rate parameters and the functions. Unfortunately, there is no reliable
theoretical basis for the choice of these parameters.

Let us remark that there is a great similarity between the SOM algorithm and a
sequential modification of EM algorithm for m.-l. estimation of normal mixtures. As
the only optimized parameters of the SOM are the reference vectors µm, we simplify the
related mixture analogously. We shall assume fixed uniform weights f (t)(m) = 1/M , and
common unitary covariance matrix Σm = U and confine ourselves only to optimization
of the mean vectors µm. The corresponding Eq. of EM algorithm for computation of the
estimates of the mean vectors has the form

µ(t+1)
m =

1

|S|f (t+1)(m)

∑
x∈S

xq(t)(m|x), m ∈M (37)

which can be rewritten as follows

µ(t+1)
m = µ(t)

m + βm(x(t))(x(t) − µ(t)
m), x(t) = x(k) ∈ S, k = (t mod τ) + 1 (38)

whereby

βm(x(t)) =
1∑k

i=1 f(m|x(i))

F (x(t)|µm, U)∑
j∈M F (x(t)|µj, U)

. (39)

At the first view there is an obvious similarity between the Eqs. (35) and (38) with
βm(xk) playing the role of corresponding function. The main difference is the periodical
substitution of the updated reference vectors µ(t)

m whenever (t mod K) = 0. Also, unlike
the SOM algorithm, the corresponding functions βm(x(t)) depend on the position of x(t)

with respect to the reference vectors µ(t)
m . Whereas the periodical substitution of parame-

ters (at the end of so called epochs) is sometimes used in the SOM procedure to suppress
the influence of data order, the corresponding functions defined by (39) completely elim-
inate any influence of the underlying two-dimensional array of nodes. In case of SOM
algorithm the external topology of the twodimensional array of nodes is enforced to the
corresponding reference vectors.

Let us remark that, from the point of view of estimating finite mixtures, we could
try to number the obtained mixture components in such a way that their corresponding
relations are close to that arising in a two-dimensional array. However, one can easily
imagine that the true corresponding relations between the component densities in a mul-
tidimensional space could be too complicated to be modeled by any two-dimensional (or
three-dimensional) array of nodes.

21

Acknowledgements

The contribution has been supported by the Grant No. A2075703 and partially by the
Complex research project No. K1075601 of the Academy of Sciences of the Czech Repub-
lic.

Bibliography

Haykin S. (1993). Neural Networks. Comprehensive Foundation. San Mateo CA: Morgan
Kaufman. [One of the best monographs on neural networks. Exhaustive and sufficiently
detailed description of the present state of art in neural networks with extensive bibliog-
raphy.]

Hebb D. O. (1949). The Organization of Behavior: A Neuropsychological Theory. New
York: Wiley. [Classical work known especially for the first formulation of the fundamental
principles of synaptical learning and neural assemblies.]

Kohonen T. (1997). The Self-Organizing Maps. New York: Springer Verlag. [One of the
latest monographs on the well known and very influential topological principle of learning
in neural networks proposed by Kohonen.]

Müller B., Reinhardt J. and Strichland M. T. (1995). Neural Networks. An Introduction
(2nd edition). New York: Springer. [An excellent monograph on neural networks and
especially on multilayer perceptrons and related aspects.]

Rosenblatt F. (1962). Principles of Neurodynamics. Washington, DC: Spartan Books.
[A famous book of the well known inventor of perceptron and author of the perceptron
convergence theorem.]

ivjgneuro.tex, November 10, 2008

22

